

RECURSION

PROGRAMS

#Recursive function to find the sum of n numbers starting

from 0.(suppose we pass 6 then it process like 6+5+4+3+2+1+

0 and returns

1

3

6

10

15

21

As result

def recursion(k):

 if(k>0):

 result = k+recursion(k-1)

 print(result)

 else:

 result = 0

 return result

print("\n\nRecursion Example Results")

recursion(6)

#Recursive function to add all numbers in a list.

def sum(list):

 if len(list) == 1:

 return list[0]

 else:

 return list[0] + sum(list[1:])

print(sum([5,7,3,8,10]))

#Algorithm for binary search.

1. If your list is of size 0, return “not-found”.

2. Check the item located in the middle of your list.

3. If this item is equal to the item you are looking for:

you’re done! Return “found”.

4. If this item is bigger than the item you are looking for:

do a binary-search on the first half of the list.

5. If this item is smaller than the item you are looking for:

do a binary-search on the second half of the list.

#Algorithm for finding factorial recursively.

1. Take a number from the user and store it in a variable.

2. Pass the number as an argument to a recursive factorial

function.

3. Define the base condition as the number to be lesser than

or equal to 1 and return 1 if it is.

4. Otherwise call the function recursively with the number

minus 1 multiplied by the number itself.

5. Then return the result and print the factorial of the number.

6. Exit.

#Algorithm for finding Fibonacci number.

1. Pass a number to recursive Fibonacci function

2. If number is <=1 then return that number

3. Otherwise call the same function twice with number-1

and number-2 with addition operation

e.g. to find the 5th element of Fibonacci series,find F5 then

F4 and so on till F0

#Recursive python function for fibonacci series

def recur_fibo(n):

 if n <= 1:

 return n

 else:

 return(recur_fibo(n-1) + recur_fibo(n-2))

In pseudo code, where n = 5, the following takes place:

fibonacci(4) + fibonnacci(3)

This breaks down into:

(fibonacci(3) + fibonnacci(2)) + (fibonacci(2) + fibonnacci(1))

This breaks down into:

(((fibonacci(2) + fibonnacci(1)) + ((fibonacci(1) +

fibonnacci(0))) + (((fibonacci(1) + fibonnacci(0)) + 1))

This breaks down into:

((((fibonacci(1) + fibonnacci(0)) + 1) + ((1 + 0)) + ((1 + 0) + 1))

This breaks down into:

((((1 + 0) + 1) + ((1 + 0)) + ((1 + 0) + 1))

